1 Prime numbers

1. According to the fundamental theorem of arithmetic, every integer may be written as a product of primes.

(a) Put the numbers 1,000,000, 1,000,004 and 999,999 in the form \(N = \prod_k \pi_k^{m_k}\) (you may use Matlab to find the prime factors).

(b) Give a generalized formula for the natural logarithm of a number \(N\) in terms of its primes \(\pi_k\).

2. Prime numbers may be identified using ‘sieves’

(a) By hand, perform the sieve Eratosthenes for \(n = 1\ldots49\). Circle each prime \(p\) then draw a slash through each number which is a multiple of \(p\).

(b) In part (a), which is the highest number you need to consider before all primes have been identified?

(c) Generalize: for \(n = 1\ldotsN\), which is the highest number you need to consider before all primes have been identified?

2 Greatest common divisors

Consider Euclid’s algorithm to find the greatest common divisor (GCD; the largest common prime factor) of two numbers

1. Understand Euclid’s algorithm

(a) Use the Matlab command `factor` to find the prime factors of \(a = 85\) and \(b = 15\). What is the greatest common prime factor of these two numbers?

(b) By hand, perform Euclid’s algorithm for \(a = 85\) and \(b = 15\).

(c) By hand, perform Euclid’s algorithm for \(a = 75\) and \(b = 25\). Is the result a prime number?

(d) Describe in your own words how the GCD algorithm works. Try the algorithm using numbers which have already been separated into factors (e.g. \(a = 5 \cdot 3\) and \(b = 7 \cdot 3\)).

2. Write a matlab function, `function x = my_gcd(a,b)` which uses Euclid’s algorithm to find the GCD of any two inputs \(a\) and \(b\). Test your function on the (a,b) combinations from parts (a) and (b). Include a printout (or handwrite) your algorithm to turn in.

Hints and advice:

- Don’t give your variables the same names as Matlab functions! Here, `gcd` is an existing function, so if you use it as a variable or function name, you won’t be able to use `gcd` to check your own function. Try `clear all` if you accidentally do this.
- Try using a ‘while’ loop for this exercise (see Matlab documentation for help).
- You may need to make some temporary variables for \(a\) and \(b\) in order to perform the algorithm.
3 Pythagorean triples

Euclid’s formula for the Pythagorean triples gives \(a = p^2 - q^2, \) \(b = 2pq, \) and \(c = p^2 + q^2. \)

1. What condition(s) must hold for \(p \) and \(q \) such that \(a, b, \) and \(c \) are always positive and nonzero?

2. Solve for \(p \) and \(q \) in terms of \(a, b, \) and \(c. \) Hint: you don’t need to use \(b.\)

3. Consider Figure 1.3 of Stillwell. Find \(p \) and \(q \) for the first five \((a,c)\) pairs in Plimpton 322.

4. Set \(n = p - q, \) and find a relationship between \(\sqrt{b + c}, a, \) and \(n \) (you may wish to start by finding new equations for the pythagorean triples involving \(q \) and \(n)). \) Is \(b + c \) always a perfect square? What condition on \(n \) and \(a \) is necessary for \(b + c \) to be a perfect square?